segunda-feira, 6 de junho de 2016

Fatoração - Diferença de dois quadrados e Trinômio Quadrado Perfeito


Trinômio Quadrado Perfeito - Soma: a2 + 2ab + b2 = (a + b)2

Quando desenvolvemos o quadrado da soma de dois termos chegamos a um trinômio quadrado perfeito, que é o que demonstra a sentença acima, só que temos os membros em ordem inversa. Então o quadrado da soma de dois termos é a forma fatorada de um trinômio quadrado perfeito.
Como fatorar o trinômio abaixo?

Se o pudermos escrever como a2 + 2ab + b2 estaremos diante de um trinômio quadrado perfeito, que fatorado é igual a (a + b)2.
Obtemos o valor de a extraindo a raiz quadrada de x2 no primeiro termo e o valor de b extraindo a raiz quadrada de 49 no terceiro termo, portanto a = x e b = 7.
Ao substituirmos a por x e b por 7 nos termos do trinômio a2 + 2ab + b2 devemos chegar a uma variação do trinômio original:

Realizando a substituição de a e b, vamos então analisar a2 + 2ab + b2 termo a termo para verificar se o polinômio obtido é igual ao polinômio original.
Quando substituímos a por x em a2 chegamos ao x2 original.
Ao substituirmos a por x e b por 7 em 2ab obtivemos . x . 7, equivalente ao 14x original.
E finalmente substituindo b por 7 em b2 chegamos a 72, equivalente ao 49 do terceiro termo do polinômio original.
Como foi possível escrever x2 + 14x + 49 na forma a2 + 2ab + b2, então estamos mesmo diante de um trinômio quadrado perfeito que pode ser fatorado assim:

Portanto:

Se o polinômio em questão não fosse um trinômio quadrado perfeito, não poderíamos realizar a fatoração desta forma, visto que a conversão de x2 + 14x + 49 em a2 + 2ab + b2 levaria a um polinômio diferente do original. Por exemplo, se o trinômio fosse x2 + 15x + 49, o segundo termo 15x iria diferir do segundo termo obtido via substituição de a e b que é 14x, portanto não teríamos um trinômio quadrado perfeito.
Note que realizamos uma verificação termo a termo para verificar se realmente tínhamos um trinômio quadrado perfeito, mas você não precisará fazer tal verificação quando no enunciado da questão estiver explícito que os polinômios realmente são trinômios quadrados perfeitos.

Exemplos





Trinômio Quadrado Perfeito - Diferença: a2 - 2ab + b2 = (a - b)2

Assim como o caso da soma visto acima, de forma análoga temos o caso da diferença.
Vejamos este outro trinômio:

Como 2x é a raiz quadrada de 4x2, do primeiro termo, e 5 é a raiz quadrada de 25 do terceiro termo, podemos reescrevê-lo como a seguir, substituindo a por 2x e b por 5 temos:

Como os respectivos termos do polinômio original e do polinômio acima são iguais, temos um trinômio quadrado perfeito:

Portanto, temos realmente um trinômio quadrado perfeito que pode ser escrito na forma a2 - 2ab + b2 = (a - b)2:

Logo:


Exemplos





Cubo Perfeito - Soma: a3 + 3a2b + 3ab2 + b3 = (a + b)3

Na sentença acima temos um polinômio e a sua forma fatorada, que nada mais é que o cubo da soma de dois termos.
Se temos um polinômio a3 + 3a2b + 3ab2 + b3 podemos fatorá-lo como (a + b)3.
Vamos analisar o polinômio abaixo:

Nosso objetivo é escrevê-lo na forma a3 + 3a2b + 3ab2 + b3, substituindo a por 7 que é a raiz cúbica de 343 e substituindo b por 3y que é a raiz cúbica de 27y3:

Como visto nos dois tipos anteriores, também neste tipo e no próximo, se não estiver claro no enunciado da questão que realmente se trata de um cubo perfeito, precisamos verificar se todos os membros do polinômio original são iguais aos termos do polinômio obtido via substituição de a e b em a3 + 3a2b + 3ab2 + b3. Como os respectivos termos do polinômio original e do polinômio acima são iguais, temos de fato um cubo perfeito:

Então temos um cubo perfeito que é fatorado como:


Exemplos





Cubo Perfeito - Diferença: a3 - 3a2b + 3ab2 - b3 = (a - b)3

A forma fatorada do polinômio no primeiro membro da sentença acima é o cubo da diferença de dois termos.
O polinômio a3 - 3a2b + 3ab2 - b3 é fatorado como (a - b)3.
Vamos fatorar a sentença abaixo de forma análoga a que fizemos no tipo de fatoração anterior:

Extraímos a raiz cúbica de 8a3 que é 2a e de 343b3 que é 7b e então substituímos a e b respectivamente por 2a e 7b em a3 - 3a2b + 3ab2 - b3:

Como os respectivos termos do polinômio original e do polinômio acima são iguais, temos um cubo perfeito:

Então:


Exemplos





Fonte: https://www.youtube.com/watch?v=2UgwEj4AA6w
http://www.matematicadidatica.com.br/Fatoracao.aspx

Nenhum comentário:

Postar um comentário