segunda-feira, 16 de maio de 2016

NÚMEROS RACIONAIS


Chama-se número racional todo o número que pode ser escrito em forma de fração,

São exemplos de números racionais;

“ Os números fracionários positivos;

+ 5/7, +1/3, +7/2, +9/4

“Os números fracionários negativos;

-5/7, -1/3, -7/2, --9/4

É concluir que todo número inteiro é também racional,

Veja:

a) O número 8 pode ser escrito como 8/1, logo 8 também é um número racional.

b) O número inteiro (-8) pode ser escrito como -8/1, logo (-8) também é um número racional

c) O número inteiro 0 pode ser escrito como 0/1, logo 0 é também um número racional.

O conjunto dos números racionais é representado pela letra Q sendo formado pelos números inteiros e pelos números fracionários.

ADIÇÃO

Para adicionarmos números racionais relativos (na forma de fração) procedemos do seguinte modo:

1) Reduzimos (se necessário) as frações dadas ao mesmo denominador positivo.

2) Somamos os numeradores de acordo com a regra de sinais da adição de inteiros.

EXEMPLOS:

a) (-2/3) + (+1/2) = -2/3 + ½ = (-4 + 3) / 6 = -1/6
b) (+3/4) + (-1/2) = ¾ - ½ = (3-2)/ 4 = ¼
c) (-4/5) + (-1/2) = -4/5 -1/2 = (-8 -5) / 10 = -13/10

EXERCÍCIOS


1) Efetue as adições:

a) (+3/5) + (+1/2) = (R: 11/10)
b) (-2/3) + (+5/4) = (R: 7/12)
c) (-4/9) + (+2/3) = (R: 2/9)
d) (-3/7) + (+2/9) = (R: -13/63)
e) (-1/8) + (-7/8) = (R: -1)
f) (-1/3) + (-1/5) = (R: -8/15)
g) (-1/8) + (5/4) = (R: 9/8)
h) (+1/5) + ( +3/5) = (R: 4/5)

2) Efetue as adições:

a) (-2/5) + 3 = (R: 13/5)
b) (-1/6) + (+2) = (R: 11/6)
c) (-5/3) + (+1) = (R: -2/3)
d) (-4) + (-1/2) = (R: -9/2)
e) (-0,2) + (-1/5) = (R: -2/5)
f) (+0,4) + (+3/5) = (R: 1)
g) (-0,5) + (+0,7) = (R: 1/5 ou 0,2)
h) (-02) + (-1/2) = (R: -7/10)

3) Efetue as seguintes adições:

a) (+5/8) + (+1/2) + ( -2/15) = (R:119/120)
b) (+1/2) + (-1/3) + (+1/5) = (R:11/30)
c) (-1/2) + (-4/10) + (+1/5) = (R: -7/10)
d) (-3/5) + (+2) + (-1/3) = (R: 16/15)

SUBTRAÇÃO

Para encontrarmos a diferença entre dois números racionais, somamos o primeiro com o oposto do segundo

Exemplos

a) (+1/2) – (+1/4) = ½ -1/4 = 2/4 -1/4 = ¼
b) (-4/5) – (-1/2) = -4/5 + ½ = -8/10 + 5/10 = -3/10

Exercícios

1) Efetue as subtrações:

a) (+5/7) – (+2/3) = (R: 1/21)
b) (+2/3) – (+1/2) = (R: 1/6)
c) (+2/3) – (+4/5) = (R: -2/15)
d) (-7/8) – (-3/4) = (R: -1/8)
e) (-2/5) – (-1/4) = (R: -3/20)
f) (-1/2) – (+5/8) = (R: -9/8)
g) (+2/3) – ( (+1/5) = (R: 7/15)
h) (-2/5) – ( +1/2) = (R: -9/10)

2) Efetue as subtrações:

a) (+1/2) – (+5) = (R: -9/2)
b) (+5/7) – (+1) = (R: -2/7)
c) 0 – ( -3/7) = (R: 3/7)
d) (-4) – (-1/2) = (R: -7/2)
e) (+0,3) – (-1/5) = (R: ½)
f) (+0,7) – (-1/3) = 31/30


3) Calcule

a) -1 – ¾ = (R: -7/4)
b) (-3/5) + (1/2) = (R: -1/10)
c) 2 – ½ -1/4 = (R: 5/4)
d) -3 -4/5 + ½ = (R: -33/10)
e) 7/3 + 2 -1/4 = (R: 49/12)
f) -3/2 + 1/6 + 2 -2/3 = (R: 0)
g) 1 – ½ + ¼ - 1/8 = (R:5/8)
h) 0,2 + ¾ + ½ - ¼ = (R:6/5)
i) ½ + (-0,3) + 1/6 = (R:11/30)
j) 1/5 + 1/25 + (-0,6) = (R: 1/10)



Fonte: http://ensinodematemtica.blogspot.com.br/2011/02/numeros-racionais-6-serie.html

Nenhum comentário:

Postar um comentário